Search results for "High-resolution seismic profile"
showing 3 items of 3 documents
Plio-Pleistocene geological evolution of the northern Sicily continental margin (southern Tyrrhenian Sea): new insights from high-resolution, multi-e…
2003
High-resolution seismic profiles were acquired in the north Sicily offshore region with an innovative, multi-tip sparker array which lacks ringing and has a base frequency around 600 Hz. The new data, combined with published data, suggest that intra-slope and extensional basins formed as a consequence of the late Miocene (?)–early Pliocene shortening and thrusting, and the middle (?)–late Pliocene continental rifting affecting the internal side of the Sicilian-Maghrebian chain. Early (?) Pleistocene to Holocene high-amplitude and high-frequency sea-level changes resulted in repeated sub-aerial exposure and flooding of the shelf, and the deposition of cyclically arranged hemipelagic and shel…
Vertical motion, structural features and stratigraphic architecture of the Neapolitan Yellow Tuff (NYT) collapse caldera-resurgent dome system off th…
2018
Seismic stratigraphic analysis of very high-resolution single channel reflection seismic profiles provided insights into the last ~10 ka vertical deformation pattern in the submerged part of the Campi Flegrei resurgent caldera, off the Pozzuoli Bay. The collapse of the central part of the Campi Flegrei is associated with the eruption of the Neapolitan Yellow Tuff (NYT) at ~15 ka BP, and was followed by discrete phases of intracaldera volcanic activity and resurgence (Di Vito et al., 1999). Only in recent years the southern part of the caldera, presently submerged off the Pozzuoli Bay, has been explored using marine geophysical data (Sacchi et al., 2014; Steinmann et al., 2016). Interpretati…
Long-term earthquake potential of active faults by using coastal and off-shore geological and morphological indicators
2017
Seismogenic fault models and active deformation ones coupled with models of both earthquake rate and earthquake probability were recently used in a time-independent modelling. The integration of models allows to estimates the magnitude, location, and likelihood of potentially damaging earthquake ruptures in regions with high natural seismic hazard. Improvements of these models imply the recognition of the spatial geometry of the larger, active faults, deemed to be the source of the most damaging future earthquakes. However, identifying active faults and calculating their geologic slip rates for deriving earthquake rates are not easy tasks in regions inaccessible to direct field studies like…